

Regional Radiation Protection Service

Oncology and Research Suite Royal Surrey County Hospital Guildford Surrey GU2 7XX Tel: 01483 408395 Email:rsc-tr.RadProt@nhs.net

ON-SITE INSPECTIONS

Commissioning and Acceptance Radiation Protection Report

Facility and associated information

Employer: Facility: Location:	AMDS Mobile CT unit "CT23" Tested at Lamboo Medical, Haydock, St I	Date of assessment: Helen's	31 st January 2024
Equipment Make Equipment Model and System No.: Tube Details:	GE Revolution EVO SN: CBDGG2300081HM GE MX200CT III Tube (SN: 119483BA6)		
Local contact(s):	Jill Mckenna, Head of Imaging & Operati	ons	

Summary

A GE Revolution Evo CT scanner has been installed into a new mobile CT facility constructed by Lamboo Medical. Commissioning of the system was undertaken on the 31st January 2024. A detailed environmental radiation protection assessment was also undertaken to assess the lead shielding in the walls, floor and the roof of the new mobile unit.

The unit was checked in accordance with the requirements of the Ionising Radiations Regulations 2017 (IRR17) and the Ionising Radiation (Medical Exposure) Regulations 2017 (IR(ME)R17). The performance of the CT scanner was assessed and compared with the manufacturer's specifications where applicable, expected performance and IPEM Reports 32 and 91. Results from these tests will provide baselines for future measurements. Engineering controls, safety features and warning signals provided by the employer were also checked as part of the survey.

It is understood that the installer, GE Medical, have completed the Critical Examination.

T Office								
Flag	No.	Note	Actioned					
			(date/initials)					
		The risk assessments for the mobile units should be updated to include						
RA	1	this unit. Area Local Rules should be written for this unit and put on						
)		display. A fault book should also be available with the unit.						
		Emergency procedures must be reviewed to ensure that the						
RIA	2 appropriate	appropriate power-off options are clearly identified for this specific						
		unit.						
		A local QC programme should be established which includes both the						
A	3	recommended manufacturer's QC and the tests required to meet the						
		requirements of IPEM 91.						
		A full survey of patient dose should be undertaken once the scanning						
	4	protocols have been established.						
Key:								
R	Immedia	te To be resolved as soon as A To be addressed A Point to	G Satisfactory					
	actionite							

Radiation Protection Overview

The CT system and physical controls comply with statutory requirements.

A two-stage warning light was in place in the control room and in the equipment room to the rear of the scanner. These was tested and indicated that the wiring installation was correct, and the position is satisfactory.

An environmental survey was carried out by measuring instantaneous dose-rates (IDRs) in the areas around the CT scan room including the roof of the mobile unit. Measurements were made using a helical body protocol. Measurements were made whilst scanning a 32cm Perspex phantom to simulate scatter. A helical body scan was selected and exposure factors used were 140 kVp, 250 mA, Large Body FOV, 1.0 s rotation time, 40 mm collimation and 'detail' pitch (0.516:1). The scan time was approximately 9.1 s. The indicated CTDIvol was 61.4 mGy, which is worst case and not likely to be clinically representative. Results are summarised below and detailed results are given in Appendix A.

All IDRs quoted in this report may be divided by a factor of 3 to give the dose-rates averaged over one minute as it can be assumed that the x-ray beam will only be on for a 20 second period in every minute. This is a conservative overestimation and in clinical use dose-rates (averaged over a minute) are likely to be lower.

Location	Measured Instantaneous Dose Rate (IDR)
Operator position	The maximum IDR at an expected operator position was measured to be
	0.1 μSv/h, which was measured at chest height.
	The IDR under the desk at the seated operator position was 0.1 μ Sv/h.
Control room wall	A maximum IDR of 4.3 μ Sv/h was measured through the control room wall.
(see Fig A1)	
Main door from control	A maximum IDR of 15.8 μ Sv/h was measured along the side of the door.
room to scan room	Around the window of the main door a maximum IDR of 2.31 $\mu\text{Sv/h}$ was
(see Fig A1)	measured.
Control room	A maximum IDR of 0.1 μ Sv/h was measured along the side of the control room
windows(see Fig A1)	window.
Door in slide out to	A maximum IDR of 12.9 μ Sv/h was measured along the side of the window in
patient lift	the door. Around the sides of the door a maximum IDR of 6.6 μ Sv/h was
(see Fig A2)	measured.
Door to rear equipment	A maximum IDR of 9.9 μ Sv/h was measured along the side of door. Through
room	the walls a maximum IDR of 3.1 μ Sv/h was measured.
(see Fig A3)	
External walls	A maximum IDR of 3.1μ Sv/h was measured along the bottom of the side walls
(bottom of walls)	of the unit.
(see Fig A4)	
Under slide-outs	At floor level under the slide outs of the unit the maximum IDR was measured
(see Fig A4)	to be 5.6 μSv/h.
External walls	Excluding the door to the patient lift, a maximum IDR of 5.5 μ Sv/h was
(middle of walls)	measured along the side walls of the unit.
(see Fig A5)	
Roof of unit	A maximum IDR of 9.3 μ Sv/h was measured through the roof. This will not
(see Fig A6)	impact on the site positioning of the unit.

The following points were noted during testing:

- The window specification was etched into the glass indicating a lead equivalence of 4.0 mm Pb at 150 kVp.
- Lamboo specification indicates that 4.0 mm Pb has been installed in the walls and 2.65 mm Pb has been installed in the doors, floor and roof.
- Exposure lights on the console and gantry were all functioning as expected.
- It is expected that Local Rules, Systems of Work, and Emergency Procedures will be subsequently developed, as on other units of this type.
- A local QC programme will need to be established.
- A fault book should be made available once in use.
- The emergency off buttons were tested and were all found to be working as expected. There is also a main power button in the Operator Room that can remove all power to the gantry.

Equipment Performance Testing

The scanner performance was found to be within expected tolerances and confirmed to meet the manufacturer's specification, where available. Results were also found to be comparable to those obtained on other scanners of a similar type.

Imaging resolution and slice reconstruction were measured to be satisfactory and meet the manufacturer's specification where available. CT noise values and CT number calibration were found to be satisfactory and comparable with other systems. Where appropriate, the values recorded will provide baseline values for annual routine performance testing of the scanner.

A comprehensive review of the performance results is appended to this report.

Prepared by: Matt Rowlandson, Principal Physicist

Authorised by: Tom Jupp, certified Radiation Protection Adviser (RPA)

2nd February 2024

Distribution: Jill Mckenna, Head of Imaging & Operations

Appendix A:

Environmental Protection Measurements

All measurements were made using a helical body protocol. Measurements were made whilst scanning a 32cm Perspex phantom to simulate scatter. A helical body scan was selected and exposure factors used were 140 kVp, 250 mA, Large Body FOV, 1.0 s rotation time, 40 mm collimation and 'detail' pitch (0.516:1). The scan time was approximately 9.1 s. The indicated CTDIvol was 61.4 mGy, which is worst case and not likely to be clinically representative.

A 32cm PMMA phantom was placed in the beam for scattering purposes. The dose rate meter used was an Raysafe 452. Results as reported are maximum instantaneous dose-rates (IDR) in μ Sv/hr. All IDR results presented may be divided by a conservative factor of 3 to give the instantaneous dose rate averaged over one minute; it can realistically be assumed that the x-ray beam will only be on for a maximum 20-second period in every minute. Thus the IDR reported is a conservative overestimation.

Regional Radiation Protection Service

Oncology and Research Suite Royal Surrey County Hospital Guildford Surrey GU2 7XX Tel: 01483 408395 Email: rsc-tr.radprot@nhs.net

RADIATION PROTECTION AND PERFORMANCE REPORT

Facility and Equipment

Employer:	AM Diagnostic Services	Survey Type:	Commissioning
Equipment type:	CT Scanner	Survey Date:	31 st January 2024
Manufacturer:	GE	Surveyed by:	Matthew Rowlandson
Model:	Revolution EVO		Benjamin King
System S/N:	CBDGG2300081HM	Reported by:	Matthew Rowlandson
Local name:	CT23	Report date:	2 nd February 2024
		Authorized by:	Tom Jupp

Radiation Protection - Environment

Assessment	Criteria	Satisfactory	Comment
	On Display	X	1
Area Local Rules	RPS name correct	-	
	Up to date	-	
Local OC	Local QC being performed	X	3
	Failings acted upon	-	
Warning lights and signs	Warning lights operational / signs in place	~	

Dosimetry

Measurement		Criteria	Result	Satisfactory	Comment
$CTDI_{100}$ in air at isocentre		Within ±15% of reference value (29.1 mGy/100mAs)	29.0 mGy/100mAs	\checkmark	
CTD	100 repeatability		0.0%	\checkmark	
	mA Within ±10% of moon		1.4%	\checkmark	
CTDI₁₀₀ in air	mA (Large focus)	within ±10% of filean	1.4%	\checkmark	
	Time		-0.3%	\checkmark	
variation	kV	Within ±15% of reference value	1.0%	\checkmark	
with	Collimation	Within 20% of reference value	3.8%	\checkmark	
	FOV (bow-tie filter)	Within ±15% of reference value	0.7%	\checkmark	
Off-axis (10 cm)		Within ±15% of reference value	0.5%	\checkmark	
F	ilter centring	Within 5%	-1.3%	\checkmark	

CTDI in Perspex

		Settings		Stated CTDI	Measured			
Measurement	Criteria	Phantom	kV	(mGy/100mAs)	CTDI (mGy/100mAs)	Satisfactory	Comment	
			80	3.35	3.48	\checkmark		
		Body	100	6.58	6.75	\checkmark		
	Within 15% of stated value		120	10.6	10.8	\checkmark		
CTDI in			140	16.1	16.6	\checkmark		
Perspex		d value Head	80	7.20	7.61	\checkmark		
			100	13.2	13.7	\checkmark		
			120	20.4	21.0	~		
						140	30.0	31.4

Image Quality

Noise and Uniformity - local water phantom

		Settings																								
Measurement	Criteria	Image Filter	Iterative Reconstruction	Collimation (slice recon) (N x T mm)	Reference	Result	Satisfactory	Comment																		
CT Number of	Within ±5 HU of Reference				0.00	0.99	1																			
CT Number of Water	Uniformity within ±10 HU of centre	STANDARD	-	64 x 0.625 (8 x 5.0)	-	0.76	\checkmark																			
Pixel Noise Value	Within ±10% of Reference																							4.73	4.84	✓
	W/ithin		None	32 x 0.625 (32 x 0.625)			1																			
Interslice measurements	expected S ⁻ range?	STANDARD	-	16 x 2.5 (16 x 2.5)	-	-	<i>✓</i>																			
				64 x 0.625 (64 x 0.625)			1																			

Artefact Evaluation

		Settings				
Measurement	Criteria	Image Filter	Iterative Reconstruction	Collimation (slice recon) (N x T mm)	Satisfactory	Comment
Artefacts	No significant artefacts	STANDARD	-	64 x 0.625 (8 x 5.0)	\checkmark	

CT Number Linearity

			Settings			
Measurement	Criteria	Scan Mode	Iterative Reconstruction	kV	Satisfactory	Comment
		Avial Llaad	Nege	120	\checkmark	
	Within ±2% or 10 HU of reference values	Axiai Head	None	80	\checkmark	
		Helical Head	50%	120	\checkmark	
CT Number Linearity			None		√	
Linearity		Axial Body			\checkmark	
		Helical Head	10%		•	
			100%		•	

Axial Head, 120 kV, IR: None, mA: 200, Collimation: 16 x 0.625 mm, Imaged slice thickness: 1 x 10.0 mm

Matarial	CT Number			
wateriai	Reference	Result		
Air	-997.7	-996.0		
PMP	-186.7	-183.7		
LDPE	-94.9	-91.4		
Polystyrene	-38.2	-37.4		
Acrylic	121.9	124.7		
Delrin	366.1	371.8		
Teflon	1006	1024		

Imaged Slice Thickness

Measurement	Criteria	Stated Thickness (mm)	Measured Thickness (mm)	Satisfactory	Comment
Imaged Slice Thickness	Within ±20% or 1 mm of stated values	0.62	0.64	\checkmark	
		1.25	1.21	\checkmark	
		2.50	2.48	\checkmark	
		5.00	4.93	\checkmark	
		10.0	9.49	\checkmark	

Other

Measurement	Criteria	Filter	Reference	Result	Satisfactory	Comment
Geometric	Within 0.5 mm of expected value	STANDARD	50.0	49.7	~	
Linearity	Ratio between 0.98 - 1.02		1.00	0.99	1	
High Contrast		Edge	11.0	11.0	1	
Spatial Resolution	Within 2 lp/cm of reference	Standard	7.00	7.00	1	
Modulation Transfer Function	Modulation 1.00 0.80 0.60 0.40 0.20 0.00 0.00 0.50 Spatial Fr	on Transfer Fun D 1.00 requency (lp/m	nction → Ref → Sur 1.50 1.50	ference -vey	√	

Collimation

Irradiated Slice Thickness

Measurement	Criteria	Collimation (N x T mm)	Reference Thickness (mm)	Measured Thickness (mm)	Satisfactory	Comment
Irradiated Slice Thickness	Within ±20% or 1 mm of reference	1 x 1.25	3.32	3.74	~	
		1 x 2.5	4.60	4.96	~	
		1 x 5.0	7.83	9.23	\checkmark	
		1 x 10.0	13.0	13.9	\checkmark	
		2 x 10.0	22.7	23.4	\checkmark	
		4 x 10.0	42.9	44.2	\checkmark	

Z-Axis Efficiency

Measurement	Criteria	Expected Efficiency (%)	Measured Efficiency (%)	Satisfactory	Comment
Z-axis efficiency	Within ±10% of expected	43.3	33.4	\checkmark	
		59.6	50.4	\checkmark	
		60.8	54.2	\checkmark	
		75.2	71.9	\checkmark	
		89.3	85.4	\checkmark	
		94.9	90.6	1	

Couch, Scan Plane & Laser Alignment

Measurement		Criteria	Satisfactory	Comment
Laser Alignment	Axial (Internal)		\checkmark	
	Sagittal (External)	Within 2 mm?	\checkmark	
	Coronal (External)		\checkmark	
	Internal to External		\checkmark	
Couch	Height scale calibration		\checkmark	
	Travel scale calibration		\checkmark	
Scout to scan plane localisation			~	

Miscellaneous

Measurement	Criteria	Settings	Stated	Measured	Satisfactory	Comment
X-Ray Tube Leakage	Less than 1mGy/hour at 1 m	kV: 120	-	0.0046 mGy/hr	\checkmark	
Half Value Layer (mmAl)	Within 1 mm of stated value	Filter: Small kV: 120.0	7.60	7.26	\checkmark	
		Filter: Large kV: 120.0	8.10	8.35	\checkmark	
Gantry Angulation	Within 1° of expected value	29.0°	-	28.5°	\checkmark	
		30.0°	-	29.2°	\checkmark	
Tube to detector Alignment	Penumbra is the same on both sides	1 x 2.5 mm	-	-	\checkmark	
mA modulation	Modulating as expected	Off-set CTDI				
		phantom – z	-	-	\checkmark	
		modulation				
		Chest/Abdo				
		Phantom – x/y	-	-	\checkmark	
		modulation				

Comments

Flag	Comments	Local action taken (where required)	Sign & Date
	1. The risk assessments for the mobile units should be		
RA	written for this unit and put on display. A fault book should also be available with the unit		
	2. Emergency procedures must be reviewed to ensure		
R/A	that the appropriate power-off options are clearly		
	identified for this specific unit.		
	3. A local QC programme should be established which		
A	includes both the recommended manufacturer's QC and		
	the tests required to meet the requirements of IPEM 91.		
A	4. A full survey of patient dose should be undertaken once the scanning protocols have been established		
Immedi	ate Resolve as Ta ha		•
R action	soon as		Satisfactory
required	l vadressed addressed		

◆ indicates baselines have been set based on the result, for use in future routine surveys

Reference values are taken from system specification or other systems of the same type

required